Cohesive Zone Analysis of Tubular Adhesively-Bonded Joints

D. R. Barbosa¹, R. D. S. G. Campilho¹,²*, R. J. B. Rocha¹, L. R. F. Ferreira¹

¹ Departamento de Engenharia Mecânica, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, R. Dr. António Bernardino de Almeida, 431, 4200-072 Porto, Portugal
² INEGI – Polo FEUP, Rua Dr. Roberto Frias, 400, 4200-465 Porto, Portugal
*Corresponding author’s e-mail address: raulcampilho@gmail.com

ABSTRACT

Bonded joints are also widely used to join tubular components in the pipeline industry, in vehicle frames and in space structures. This work performs an experimental and numerical study of axially-loaded tubular joints between aluminium adherends and bonded with three different adhesives. The effect of the overlap length between inner and outer tubes (Lₒ) was addressed in the experiments and numerical study. A Finite Element Method (FEM) analysis was undertaken to analyse peel (σ) and shear stresses (τ) in the adhesive layer. Cohesive zone models (CZM) were employed to predict the joint strength. The CZM technique was positively validated for the strength analysis of tubular joints.

KEYWORDS: adhesive joint, tubular joint, cohesive zone modelling, finite element method, geometry optimization.

REFERENCES

Numerical Modeling of Adhesive Joints

Grant L., Adams R., da Silva L. F. M., Campilho R. D. S. G., Moreira R. D. F.

Stress Analysis of Tubular Adhesive Joints with Delaminated Adherend.


Cohesive zone model based analytical solutions for adhesively bonded pipe joints under torsional loading.


Strength improvement of adhesively-bonded scarf repairs in aluminium structures with external reinforcements.


Principles and practices of adhesive bonded structural joints and repairs.


Modelling adhesive joints with cohesive zone models: effect of the cohesive law shape of the adhesive layer.


Strength prediction of single- and double-lap joints by standard and extended finite element modelling.


Boundary element analysis of adhesively bonded joints.


Overview of different strength prediction techniques for single-lap bonded joints.


Stress and failure analyses of scarf repaired CFRP laminates using a cohesive damage model.


Fully-coupled nonlinear analysis of single lap adhesive joints.


Boundary element analysis of adhesively bonded joints.


Structural adhesive joints in engineering.


Die Nietkraftverteilung in zugbeanspruchten Nietverbindungen mit konstanten Laschenquerschnitten.

Luftfahrtforschung, vol. 15(7), 1938, pp. 41-47.

Experimental and numerical analysis of single-lap joints for the automotive industry.


Adhesive selection for single lap bonded joints: Experimentation and advanced techniques for strength prediction.


Advances in Numerical Modelling of Adhesive Joints.


Evaluation of different modelling conditions in the cohesive zone analysis of single-lap bonded joints.


A multi-objective optimization procedure for bonded tubular-lap joints subjected to axial loading.


Stress Analysis of Tubular Adhesive Joints with Delaminated Adherend.